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Abstract

We present an overview of max-algebra basics. In particular, we show
how to �nd all eigenvalues and eigenvectors of a matrix. A brief account
of advanced topics and open problems is included as well.

1 De�nitions

We denote R = R [ f�1g; R = R [ f+1g and

a� b = max(a; b)

and
a
 b = a+ b

for a; b 2 R. By de�nition

(�1) + (+1) = �1 = (+1) + (�1)

This notation is of key importance in max-algebra since it enables us to formu-
late and in many cases also solve certain non-linear problems in a linear-like way.
Max algebra has been studied by many authors from the 1960�s and the reader
is referred to [40], [2], [36] or [11] for more information about max-algebra, see
also [23], [25], [28], [50], [53], [18], [38], [35], [5], [4].
In max-algebra the pair of operations (�;
) is extended to matrices and

vectors formally in the same way as in linear algebra. That is if A = (aij); B =

(bij) and C = (cij) are matrices with elements from R of compatible sizes, we
write C = A�B if cij = aij � bij for all i; j, C = A
B if cij =

P�
k aik
 bkj =

maxk(aik + bkj) for all i; j and �
A = A
 � = (�
 aij) for � 2 R:
We denote �1 by " and for convenience we also denote by the same symbol

any vector or matrix whose every component is ": If a 2 R then the symbol a�1
stands for �a:
So 2� 3 = 3; 2
 3 = 5; 4�1 = �4;

(5; 9)

�
�3
"

�
= 2
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and the system �
1 �3
5 2

�


�
x1
x2

�
=

�
3
7

�
in conventional notation reads

max(1 + x1;�3 + x2) = 3

max(5 + x1; 2 + x2) = 7

The possibility of working in a linear-like way is based on the fact that
(R;�;
) is a commutative idempotent semiring and (Rn;�) is a semimodule.
Let us denote by I the square matrix, called the unit matrix, whose diagonal
entries are 0 and o¤-diagonal ones are ": Obviously, A
I = A = I
A whenever
I is of a suitable dimension.
We will assume that m and n are given integers, m;n � 1; and M and N

will denote the sets f1; :::;mg and f1; :::; ng, respectively. A square matrix is
called diagonal, notation diag(d1; :::; dn); if its diagonal entries are d1; :::; dn 2 R
and o¤-diagonal entries are ": Thus I = diag(0; :::; 0): Any matrix which can
be obtained from the unit (diagonal) matrix by permuting the rows and/or
columns will be called a permutation matrix (generalised permutation matrix ).
The position of generalised permutation matrices is slightly more special in max-
algebra than in conventional linear algebra as they are the only matrices having
an inverse:

Theorem 1.1 [25] Let A = (aij) 2 R
n�n

: Then a matrix B = (bij) such that

A
B = I = B 
A (1)

exists if and only if A is a generalized permutation matrix.

Clearly, if an inverse matrix to A exists then it is unique and we may therefore
denote it by A�1: If A is a square matrix then the iterated product A
A
:::
A
in which the letter A stands k-times will be denoted as Ak: By de�nition A0 = I
for any square matrix A.
The symbol ak applies similarly to scalars, thus ak is simply ka and a0 = 0:

This de�nition immediately extends to ax = xa for any real x.
The idempotency of � enables us to deduce (easily by induction) the follow-

ing formula, speci�c for max-algebra:

Lemma 1.1 The following holds for every A 2 Rn�n and non-negative integer
k :

(I �A)k = I �A�A2 � :::�Ak: (2)

The columns (rows) of A = (aij) 2 R
m�n

will be denoted by A1; :::; An
(a1; :::; am). As an analogue to "stochastic", A will be called column (row) R-
astic [25] if

P�
i2M aij 2 R for every j 2 N (if

P�
j2N aij 2 R for every i 2 M),

that is when A has no " column (no " row). The matrix A will be called doubly
R-astic if it is both row and column R-astic. Also, we will call a vector �nite if
none of its components is �1 or +1: Similarly for scalars.
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2 About the ground set

The semiring (R;�;
) could be introduced in more general terms as follows: Let
G be an arbitrary linearly ordered commutative group (LOCG). Let us denote
the group operation by 
 and the linear order by � : Thus G = (G;
;�) where
G is a set. We can then de�ne a�b = max(a; b) for a; b 2 G and set G = G[f"g
where " is an adjoined element such that " < a for all a 2 G: It is easily seen that
S = (G;�;
) is an idempotent commutative semiring. Max-algebra as de�ned
in Section 1.1 corresponds to the case when G is the additive group of reals,
that is G = (R;+;�) where � is the natural ordering of real numbers. This
group will be denoted by G0 and called the principal interpretation [25]. Let us
consider a few other linearly ordered commutative groups (here R+[Q+;Z+] are
the sets of positive reals (rationals, integers)):

G1 = (R;+;�)
G2 = (R+; �;�)
G3 = (Z;+;�)
G4 = (Q+; �;�)
G5 = (Z+;+;�)

Obviously both G1 and G2 are isomorphic with G0 (the isomorphism in the
�rst case is f(x) = �x; in the second case it is f(x) = log(x)). This paper
presents results for max-algebra over the principal interpretation but due to the
isomorphism these results immediately extend to max-algebra over G1 and G2:
Many (but not all) of the results are applicable to general LOCG.

3 Matrices and digraphs

We will sometimes use the language of directed graphs (digraphs). A digraph
is an ordered pair D = (V;E) where V is a non-empty set (of nodes) and
E � V � V (the set of arcs). A subdigraph of D is any digraph D0 = (V 0; E0)
such that V 0 � V and E0 � E: If e = (u; v) 2 E for some u; v 2 V then we say
that e is leaving u and entering v: Any arc of the form (u; u) is called a loop.
Let D = (V;E) be a given digraph. A sequence � = (v1; :::; vp) of nodes in D

is called a path (in D) if p = 1 or p > 1 and (vi; vi+1) 2 E for all i = 1; :::; p� 1:
The node v1 is called the starting node and vp the endnode of �, respectively.
The number p� 1 is called the length of � and will be denoted by l (�) : If u is
the starting node and v is the endnode of � then we say that � is a u� v path.
If there is a u � v path in D then v is said to be reachable from u, notation
u ! v. Thus u ! u for any u 2 V: A path (v1; :::; vp) is called a cycle if
v1 = vp and p > 1 and it is called an elementary cycle if, moreover, vi 6= vj for
i; j = 1; :::; p� 1; i 6= j: If there is no cycle in D then D is called acyclic.
A digraph D is called strongly connected if u ! v for all nodes u; v in

D. A subdigraph D0 of D is called a strongly connected component of D if
it is a maximal strongly connected subdigraph of D: All strongly connected
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components of a given digraph D = (V;E) can be identi�ed in O (jV j+ jEj)
time [49]. Note that a digraph consisting of one node and no arc is strongly
connected and acyclic, however if a strongly connected digraph has at least two
nodes then it obviously cannot be acyclic. Because of this singularity we will
have to assume in some statements that n > 1:
If A = (aij) 2 R

n�n
then the symbols FA (ZA) will denote the digraphs with

the node set N and arc sets E = f(i; j) ; aij > "g (E = f(i; j) ; aij = 0g) : FA
(ZA) will be called the �niteness (zero) digraph of A: If FA is strongly connected
then A is called irreducible and reducible otherwise.

Lemma 3.1 If A 2 Rn�n is irreducible and n > 1 then A is doubly R-astic.

Note that a matrix may be reducible even if it is doubly R-astic (e.g. I).

Lemma 3.2 If A = (aij) 2 R
n�n

is row or column R-astic then FA contains a
cycle.

A weighted digraph is D = (V;E;w) where (V;E) is a digraph and w : E �!
R: All de�nitions for digraphs are naturally extended to weighted digraphs. If
� = (v1; :::; vp) is a path in (V;E;w) then the weight of � is w(�) = w (v1; v2)+
w (v2; v3) + :::+ w (vp�1; vp) if p > 1 and " if p = 1. A cycle � is called positive
if w(�) > 0. In contrast, � is called a zero cycle if w (vk; vk+1) = 0 for all
k = 1; :::; p� 1:
Given A = (aij) 2 R

n�n
the symbol DA will denote the weighted digraph

(N;E;w) where FA = (N;E) and w (i; j) = aij for all (i; j) 2 E: If � =
(i1; :::; ip) is a path in DA then we denote w(�;A) = w(�) and it now follows
from the de�nitions that w(�;A) = ai1i2 + ai2i3 + :::+ aip�1ip if p > 1 and " if
p = 1.

4 The key players

The following problems play a central role in max-algebra:

Problem 4.1 (One-sided linear systems) Given A 2 Rm�n and b 2 Rm;
�nd all x 2 Rn satisfying

A
 x = b:

Problem 4.2 (The eigenproblem) Given A 2 Rn�n; �nd all � 2 R (eigen-
values) and all x 2 Rn; x 6= " (eigenvectors) satisfying

A
 x = �
 x:

In this section we introduce the main tools for solving these problems: the
maximum cycle mean, transitive closures and conjugation. The eigenproblem
is discussed in Section 6 and the one-sided linear system problem is brie�y
discussed at the end of this section.

4



4.1 Maximum cycle mean

Everywhere in this paper, given A 2 Rn�n, the symbol �(A) will stand for the
maximum cycle mean of A, that is if DA has at least one cycle then

�(A) = max
�
�(�;A); (3)

where the maximisation is taken over all cycles in DA and

�(�;A) =
w(�;A)

l (�)
(4)

denotes the mean of a cycle �. If DA is acyclic we set �(A) = ": Thus �(A) > "
if A is irreducible and n > 1: A is called de�nite if �(A) = 0 [16], [25].

Example 4.1 If

A =

0@ �2 1 �3
3 0 3
5 2 1

1A
then the cycle means of cycles of length 1 are �2; 0; 1; of length 2 are 2; 1; 5=2;
of length 3 are 3 and 2=3: Hence �(A) = 3:

The maximum cycle mean of a matrix is of fundamental importance in max-
algebra because for any square matrix A it is the greatest (max-algebraic) eigen-
value of A and every eigenvalue of A is the maximum cycle mean of some prin-
cipal submatrix of A. Note that if A = (aij) 2 R

n�n
is row or column R-astic

then �(A) > ":

Lemma 4.1 �(A) remains unchanged if the maximisation in (3) is taken over
all elementary cycles.

Lemma 4.2 Let A 2 Rn�n: Then for every � 2 R the sets of arcs (and therefore
also the sets of cycles) in DA and D�
A are equal and �(�; �
A) = �
�(�;A)
for every cycle � in DA:

Theorem 4.3 Let A 2 Rn�n and � 2 R: Then �(� 
 A) = � 
 �(A) for any
� 2 R: Hence (�(A))�1 
A is de�nite whenever �(A) > ":

The matrix (�(A))�1 
A will be denoted by A�.
Computation of the maximum cycle mean from the de�nition is di¢ cult

except for small matrices since the number of cycles is prohibitively large in
general. The task of �nding the maximum cycle mean of a matrix was studied
also in combinatorial optimisation quite independently of max-algebra. Publi-
cations presenting a method are e.g. [50], [25], [30], [45], [44]. One of the �rst
and simplest was Vorobyov�s formula

�(A) = max
k2N

max
i2N

a
[k]
ii

k

where Ak =
�
a
[k]
ij

�
; k 2 N:
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Example 4.2 For the matrix A of Example 4.1 we get

A2 =

0@ 4 1 4
8 5 4
6 6 5

1A ;
A3 =

0@ 9 6 5
9 9 8
10 7 9

1A ;
hence �(A) = max(1; 5=2; 9=3) = 3:

Perhaps the best known method today is Karp�s algorithm [44] based on
Theorem 4.4 below which �nds the maximum cycle mean of an n� n matrix A
in O(n jEj) time where E is the set of arcs of DA. Note that for the computation
of the maximum cycle mean of a matrix we may assume without loss of generality
thatA is irreducible since any cycle is wholly contained in one strongly connected
component and, as already mentioned, all strongly connected components can
be recognised in linear time [49]. Let A = (aij) 2 R

n�n
and s 2 N be an

arbitrary �xed node of DA = (N;E; (aij)) : For every j 2 N; and every positive
integer k we de�ne Fk (j) as the maximum weight of an s� j path of length k;
if no such path exists then Fk (j) = ":

Theorem 4.4 (Karp) If A = (aij) 2 R
n�n

is irreducible then

�(A) = max
j2N

min
k2N

Fn+1 (j)� Fk (j)
n+ 1� k : (5)

Note that there are also other, fast methods for �nding the maximum cycle
mean for general matrices whose performance bound is not known. See for
instance Howard�s algorithm or the power method [2], [35], [40], [8], [32], [33].

4.2 The transitive closures

Given A 2 Rn�n we de�ne the in�nite series

�(A) = A�A2 �A3 � ::: (6)

and
�(A) = I � �(A) = I �A�A2 �A3 � ::: (7)

If these series converge, the matrix �(A) is called the weak transitive closure of
A; �(A) is the strong transitive closure of A: These names are motivated by the
digraph representation if A is a f0;�1g matrix since it is readily seen that the
existence of arcs (i; j) and (j; k) in Z�(A) implies that also the arc (i; k) exists.
The matrices �(A) and �(A) are of fundamental importance in max-algebra.

This follows from the fact that they enable us to e¢ ciently describe ALL non-
trivial solutions (if any) to

A
 x = x (8)
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in the case of �(A) and ALL �nite solutions to

A
 x � x (9)

in the case of�(A): As a consequence (see Chapter 6) the weak transitive closure
enables us to �nd all eigenvectors of a matrix and the strong transitive closure
all �nite solutions (called subeigenvectors) to

A
 x � �
 x

where � 2 R (see Theorem 4.5 below). The possibility of �nding all solutions is
an important feature of max-algebra and it provides a powerful mechanism for
solving a range of problems whose solution would otherwise be awkward [14].
We will �rst show how �(A) and �(A) can be used for �nding one solution to

(8) and (9), respectively. Then we describe all �nite solutions to (9) using �(A).
The description of all solutions to (8) will follow from the theory presented in
Chapter 6.
Consider the matrix A2 = A
A : its elements areX�

k2N
aik 
 akj = max

k2N
(aik + akj);

that is the weights of the heaviest i� j paths of length 2 (if any) for all i; j 2 N .
Similarly the elements of Ak (k = 1; 2; :::) are the weights of heaviest paths
of length k for all pairs of nodes. Therefore the matrix �(A) (if the in�nite
series converges) represents the weights of heaviest paths of any length for all
pairs of nodes and motivated by this fact it is usually called the metric matrix
corresponding to the matrix A [25]. Note that �(A) is often called the Kleene
star [42].
If �(A) � 0 then all cycles in DA have non-positive weights and so by

removing from a path a subpath which is a cycle will result in a path of a
weight not less than that of the original path. Since every i� j path of length
greater than n contains a subpath which is a cycle, after a �nite number of cycle
deletions we can �nd an i� j path of length n or less, whose weight is not less
than that of the original path. Hence we have:

Ak � A�A2 � :::�An for every k � 1 (10)

and therefore �(A) for any matrix with �(A) � 0; and in particular for de�nite
matrices, exists and is equal to A�A2� :::�An: On the other hand if �(A) > 0
then a positive cycle in DA exists and (6) diverges. We have proved:

Proposition 4.1 Let A 2 Rn�n: Then (6) converges if and only if �(A) � 0:
If �(A) � 0 then

�(A) = A�A2 � :::�Ak

for every k � n: If A is also irreducible and n > 1 then �(A) is �nite.
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A matrix A = (aij) 2 R
n�n

is called increasing if aii � 0 for all i 2 N:
Obviously, A = I � A when A is increasing and so then there is no di¤erence
between �(A) and �(A):

Lemma 4.3 If A = (aij) 2 R
n�n

is increasing then x � A
x for every x 2 Rn:
Hence

A � A2 � A3 � :::. (11)

A matrix A = (aij) 2 R
n�n

is called strongly de�nite if it is de�nite and
increasing. Since the diagonal entries of A are the weights of cycles (loops) we
have that aii = 0 for all i 2 N if A is strongly de�nite. From (10) and (11) we
deduce:

Proposition 4.2 If A 2 Rn�n is strongly de�nite then

�(A) = An�1 = An = An+1 = ::::

The matrix �(A) also has some remarkable properties. A key to under-
standing these is Lemma 1.1 which immediately implies another formula:

�(A) = �(I �A): (12)

Proposition 4.3 If A 2 Rn�n; �(A) � 0 then

�(A) = I �A� :::�An�1; (13)

(�(A))
k
= �(A) (14)

for every k � 1 and
A
�(A) = �(A): (15)

Theorem 4.5 [24], [34], [47], [12] Let A = (aij) 2 R
n�n

; �(A) > ". Then

(a) A
 x � �
 x has a �nite solution if and only if �(A) � �.

(b) If �(A) � � then
A
 x � �
 x; x 2 Rn

if and only if
x = �(��1 
A)
 u; u 2 Rn:

We �nish this section with computational observations. The product of two
n�n matrices from the de�nition uses O(n3) operations of � and 
 and unlike
in conventional linear algebra a faster way of �nding this product does not seem
to be known. This implies that the computation of �(A) for a matrix A with
�(A) � 0 from the de�nition needs O(n4) operations. However, the classical
Floyd-Warshall algorithm for �nding the all-pairs shortest/longest distances can
do this job in O(n3) time.
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Example 4.3 For the matrix A of Example 4.1 we have �(A) = 3; hence by
subtracting 3 from every entry of A we obtain the de�nite matrix A� :0@ �5 �2 �6

0 �3 0
2 �1 �2

1A :
We may calculate �(A�) from the de�nition as A� �A2� �A3�: Since

A2� =

0@ �2 �5 �2
2 �1 �2
0 0 �1

1A ; A3� =
0@ 0 �3 �4
0 0 �1
1 �2 0

1A
we see that

�(A�) =

0@ 0 �2 �2
2 0 0
2 0 0

1A :
Alternatively we may use Algorithm Floyd-Warshall:

A� =

0@ �5 �2 �6
0 �3 0
2 �1 �2

1A p = 1���!

0@ �5 �2 �6
0 �2 0
2 0 �2

1A
p = 2���!

0@ �2 �2 �2
0 �2 0
2 0 0

1A p = 3���!

0@ 0 �2 �2
2 0 0
2 0 0

1A :
4.3 Dual operators and conjugation

Other tools that help to overcome the di¢ culties caused by the absence of
subtraction and matrix inversion are the dual pair of operations (�0;
0) and
the matrix conjugation respectively [24], [25]. These are de�ned as follows. For

a; b 2 R set

a�0 b = min(a; b);

a
0 b = a+ b if fa; bg 6= f�1;+1g

and
(�1)
0 (+1) = +1 = (+1)
0 (�1) :

The pair of operations (�0;
0) is extended to matrices (including vectors)

in the same way as (�;
) and it is easily veri�ed that all properties described
in Section 1 hold dually if � is replaced by �0and 
 by 
0:
The conjugate a� of a 2 R is de�ned as follows: If a 2 R then a� = a�1 and

1� = �1; (�1)� = 1: The conjugate of A = (aij) 2 R
m�n

is A� = (bij) 2
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R
n�m

; where bij = (aji)
� for every i 2 M; j 2 N: We will denote bij by a�ij :

Hence A� = �AT if A 2 Rm�n: The signi�cance of conjugation is indicated by
the following.

Theorem 4.6 [24] If A 2 R
m�n

; b 2 R
m
and x 2 R

n
then

A
 x � b if and only if x � A� 
0 b:

Corollary 4.1 If A 2 R
m�n

, b 2 R
m
and c 2 R

n
then

(a) A� 
0 b is the greatest solution to A
 x � b; that is

A
 (A� 
0 b) � b

(b) A
 x = b has a solution if and only if x is a solution and

(c)
A
 (A� 
0 (A
 c)) = A
 c:

The vector x = A�
0 b will be called the principal solution to A
x � b and
A
 x = b:

5 Subspaces, generators, extremals and bases

Here we provide a brief overview of the theory of max-linear subspaces, inde-
pendence and bases. This presentation follows the lines of [13]. The results of
this section have been proved in [25], [41], [43] and [52].
Let S � Rn: The set S is called a max-algebraic subspace if �
u��
v 2 S

for every u; v 2 S and �; � 2 R: The adjective "max-algebraic" will usually be
omitted.
A vector v is called a max combination of S if

v =
X�

x2S
�x 
 x; �x 2 R (16)

where only a �nite number of �x are �nite. The set of all max combinations of
S is denoted by span (S) :We set span (;) = f"g : It is easily seen that span (S)
is a subspace. If span (S) = T then S is called a set of generators for T:
A vector v 2 S is called an extremal in S if v = u � w for u; v 2 S implies

v = u or v = w: Clearly, if v 2 S is an extremal in S and � 2 R then � 
 v is
also an extremal in S:
Let v = (v1; :::; vn)

T 2 Rn; v 6= ": The max-norm or just norm of v is
kvk = max (v1; :::; vn) ; v is called scaled if kvk = 0: The set S is called scaled if
all its elements are scaled.
The set S is called dependent if v is a max combination of S � fvg for some

v 2 S: Otherwise S is independent. The set S is called totally dependent if every
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v 2 S is a max combination of S � fvg : Note that ; is both independent and
totally dependent and f"g is totally dependent.
Let S; T � Rn: The set S is called a basis of T if it is an independent set of

generators for T: The set
�
ei; i = 1; :::; n

	
de�ned by

eij =

�
0 if j = i
" if j 6= i

is a basis of Rn; it will be called standard.

Theorem 5.1 Let E be the set of scaled extremals in a subspace T: Let S � T
consist of scaled vectors. Then the following are equivalent:

(a) S is a minimal set of generators for T:

(b) S = E and S generates T:

(c) S is a basis for T:

Theorem 5.1 shows that if a subspace has a (scaled) basis then it must be
its set of (scaled) extremals, hence the basis is essentially unique. Note that a
maximal independent set in a subspace T may not be a basis for T as is shown
by the following example.

Example 5.1 Let T � R2 consist of all (x1; x2)T with x1 � x2 > ": If 0 > a >
b > " then

n
(0; a)

T
; (0; b)

T
o
is a maximal independent set in T but it does not

generate T:

We now deduce a few corollaries of Theorem 5.1. The �rst one can be found
in [31], [43] and [48].

Corollary 5.1 If T is a �nitely generated subspace then its set of scaled ex-
tremals is the unique scaled basis for T:

Note that terminology varies in the max-algebraic literature and, for in-
stance, extremals are called �vertices�in [31], [43] and �irreducible elements�in
[51].
Next corollaries are related to totally dependent sets.

Corollary 5.2 If S is a non-empty scaled totally dependent set then S is in�-
nite.

Corollary 5.3 Let T � Rn be a subspace. Then the following are equivalent:

1. There is no extremal in T:

2. There exists a totally dependent set of generators for T:

3. Every set of generators for T is totally dependent.
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A subspace S in Rn is called open if S�f"g is open in the Euclidean topology.

Corollary 5.4 Let T � Rn be a subspace. If T � f"g is open and does not
contain any vector of the standard basis then every generating set for T is totally
dependent (and hence T has no basis).

An example of an open subspace is Rn [f"g : For this particular case Corol-
lary 5.4 was proved in [27]. Another example consists of all vectors (a; b)T with
a; b 2 R; a > b:
More geometric and topological properties can be found in [13], [37], [20],

[21], [19] and [41].
We have seen a number of corollaries of the key result, Theorem 5.1. We

shall now link the �rst of these corollaries, Corollary 5.1 to column spaces of
matrices. As usual the column space of a matrix A 2 Rm�n is the subspace

Col(A) =
nX�

j2N
xj 
Aj ;xj 2 R

o
=
n
A
 x;x 2 Rn

o
Recall that by �nding a solution to a system A
x = b we prove that a vector (b)
is in the subspace generated by the columns of A: An obvious task then is to �nd
a basis of this subspace. Corollary 5.1 guarantees that such a basis exists and
is unique up to scalar multiples of its elements. Note that for a formal proof we
would have to �rst remove repeated columns as they would be indistinguishable
in a set of columns, but they may be re-instated after deducing the uniqueness
of the basis since the expression "multiples of a vector v" also covers vectors
identical with v: We summarise:

Theorem 5.2 For every A 2 Rm�n there is a matrix B 2 Rm�k; k � n; con-
sisting of some columns of A such that no two columns of B are equal and the
set of column vectors of B is a basis of Col (A) : This matrix B is unique up to
the order and scalar multiples of its columns.

It remains to show how to �nd a basis of the column space of a matrix, say A:
If a column, say Ak is a max combination of the remaining columns and A0 arises
from A by removing Ak then Col(A) = Col(A0) since in every max combination
of the columns of A; the vector Ak may be replaced by a max combination
of the other columns, that is columns of A0: By repeating this process until no
vector can be found that would be a max combination of the remaining columns,
we arrive at a set that satis�es both requirements in the de�nition of a basis.
Every check of independence is equivalent to solving an m � (n� 1) one sided
system and can therefore be performed using O (mn) operations, thus the whole
process is O

�
mn2

�
: Although asymptotically equally e¢ cient, a method called

the A-test, essentially described in the following theorem, is more compact:

Theorem 5.3 [25] Let A = (aij) 2 R
m�n

and A be the matrix arising from
A� 
0 A after replacing the diagonal entries by ": Then for all j 2 N the vector
Aj is equal to the jth column of A
A if and only if Aj is a max combination
of the other columns of A: The elements of the jth column of A then provide
the coe¢ cients to express the max combination.

12



Example 5.2 Let

A =

0@ 1 1 2 " 5
1 0 4 1 5
1 " �1 1 0

1A :
Then

A� 
0 A =

0BBBB@
�1 �1 �1
�1 0 �"
�2 �4 1
�" �1 �1
�5 �5 0

1CCCCA
0
0@ 1 1 2 " 5
1 0 4 1 5
1 " �1 1 0

1A

=

0BBBB@
0 �1 �2 0 �1
0 " 1 " 4

�3 " 0 " 1
0 " �2 " �1

�4 " �3 " 0

1CCCCA :
Hence

A
A =

0@ 1 0 2 1 5
1 � 2 � 5
1 � � � 0

1A :
We deduce

A1 = 0
A2 ��3
A3 � 0
A4 ��4
A5
A5 = �1
A1 � 4
A2 � 1
A3 ��1
A4

and the basis of Col(A) is fA2; A3; A4g :

The number of vectors in a basis (and therefore in every basis) of a �nitely
generated subspace T is called the dimension of T; notation dim (T ) : Unlike
in linear algebra, the dimensions of max-algebraic subspaces are unrelated to
the numbers of components of the vectors in these subspaces. This has been
observed long ago and the following two statements describe the anomaly.

Theorem 5.4 [25] Let m � 3 and k � 2: There exist k vectors in Rm none of
which is a max combination of the others.

Theorem 5.5 [25] Every real 2�n matrix has two columns such that all other
columns are a max combination of these two columns.

6 The eigenproblem

Given A 2 Rn�n; the task of �nding the vectors x 2 Rn; x 6= " (eigenvectors)
and scalars � 2 R (eigenvalues) satisfying

13



A
 x = �
 x (17)

is called the (max-algebraic) eigenproblem. For some applications it may be
su¢ cient to �nd one eigenvalue-eigenvector pair, however we show how to e¢ -
ciently �nd all eigenvalues and eigenvectors for any matrix A.
The eigenproblem is of key importance in max-algebra. It has been studied

since the 1960�s [23] in connection with the analysis of the steady-state behav-
iour of production systems. Full solution of the eigenproblem in the case of
irreducible matrices has been presented in [25] and [38], see also [50]. A general
spectral theorem for reducible matrices has appeared in [35] and [3], and partly
in [17].

Unless stated otherwise, we assume everywhere that n � 1 is an integer,
A = (aij) 2 R

n�n
and � 2 R: Let us de�ne

V (A; �) = fx 2 Rn;A
 x = �
 xg;
�(A) = f� 2 R;V (A; �) 6= f"gg;
V (A) =

S
�2�(A)

V (A; �);

V +(A; �) = V (A; �) \ Rn;
V +(A) = V (A) \ Rn:

Note that if A = " then �(A) = f"g and V (A) = Rn:
We also denote E(A) = fi 2 N ;9� = (i = i1; :::; ik; i1) : �(�;A) = �(A)g:

The elements of E(A) are called critical nodes. A cycle � is called critical if
�(�;A) = �(A). The critical digraph of A is the digraph C(A) with the set of
nodes N ; the set of arcs is the union of the sets of arcs of all critical cycles. It is
well known that all cycles in a critical digraph are critical [2]. Two nodes i and
j in C(A) are called equivalent (notation i � j) if i and j belong to the same
critical cycle of A: Clearly, � constitutes a relation of equivalence in N:

6.1 The principal eigenvalue and corresponding eigenvec-
tors

Note that if �(A) = " then �(A) = f"g and the eigenvectors of A are exactly
the vectors (x1; :::; xn)

T 2 Rn such that xj = " whenever the jth column of A
is not " (clearly in this case at least one column of A is "). We will therefore
usually assume that �(A) > ":

Theorem 6.1 [25][1] �(A) is an eigenvalue for any matrix A 2 Rn�n: If
�(A) > " then up to n eigenvectors corresponding to �(A) can be found among
the columns of �(A�). More precisely every column of �(A�) with zero diag-
onal entry is an eigenvector of A with corresponding eigenvalue �(A) and we
obtain a basis of V (A; �(A)) by taking exactly one gk for each equivalence class
in (E(A);�).

14



It follows that �(A) is of a special signi�cance as an eigenvalue: It is an
eigenvalue for every matrix. We will also show in the next section that it is the
only eigenvalue whose corresponding eigenvectors may be �nite (Theorem 6.2)
and it will follow from the Spectral Theorem (Theorem 6.7 below) that �(A)
is the greatest eigenvalue. We will therefore call �(A) the principal eigenvalue
of A and the subspace V (A; �(A)) will be called the principal eigenspace of A:
The dimension of this subspace will be denoted dim (A) : Note that dim (A) can
be found in O(n3) time.

Example 6.1 Consider the matrix

A =

0BBBBBB@
7 9 5 5 3 7
7 5 2 7 0 4
8 0 3 3 8 0
7 2 5 7 9 5
4 2 6 6 8 8
3 0 5 7 1 2

1CCCCCCA :

The maximum cycle mean is 8 attained by three critical cycles: (1; 2; 1); (5; 5)
and (4; 5; 6; 4). Thus �(A) = 8; dim (A) = 2 and

�(A�) =

0BBBBBB@
0 1 �1 0 1 1

�1 0 2 �1 0 0
0 1 �1 0 1 1

�1 0 �1 0 1 1
�2 �1 �2 �1 0 0
�2 �1 �2 �1 0 0

1CCCCCCA :

C(A) has two strongly connected components, one with the node set f1; 2g ; the
other one with the node set f4; 5; 6g : Hence �rst and second column of �(A�)
are multiples of each other and similarly the fourth, �fth and sixth columns.
For the basis of V (A) = V +(A) we may take for instance the �rst and fourth
column.

Example 6.2 Consider the matrix

A =

0BB@
0 3
1 �1

2
1

1CCA
where the missing entries are ": Then �(A) = 2; E(A) = f1; 2; 3g ; 1 s 2;dim (A) =
2: We can compute

�(A�) =

0BB@
0 1

�1 0
0
�1

1CCA ;
15



hence a basis of the principal eigenspace is e.g.

fg2; g3g =
n
(1; 0; "; ")

T
; ("; "; 0; ")

T
o
:

6.2 Finite eigenvectors

The following fundamental result shows that �(A) is the only possible eigenvalue
corresponding to �nite eigenvectors. Note that if A = " then every �nite vector
of a suitable dimension is an eigenvector ofA and all correspond to the eigenvalue
�(A) = ":

Theorem 6.2 [25] Let A = (aij) 2 Rn�n: If A 6= " and V +(A) 6= ; then
�(A) > " and A
 x = �(A)
 x for every x 2 V +(A):

The next statement provides a simple criterion for the existence of a �nite
eigenvector.

Theorem 6.3 Let A 2 Rn�n: If �(A) > " and � (A�) = (g1; :::; gn) then

V +(A) 6= ; ()
X

j2E(A)

�
gj 2 Rn:

Since gij is the greatest weight of i � j paths in DA�
we readily deduce a

classical result:

Corollary 6.1 (Cuninghame-Green [25]) Suppose A 2 Rn�n; A 6= ". Then
V +(A) 6= ; if and only if the following are satis�ed:

1. �(A) > ".

2. In DA there is
(8i 2 N)(9j 2 E(A))i! j:

Theorem 6.4 Let A 2 Rn�n: If �(A) > ";� (A�) = (g1; :::; gn) and V +(A) 6= ;
then

V +(A) =

8<: X
j2E(A)

�
�j 
 gj ;�j 2 R

9=; :
The set of �nite eigenvectors can actually be generated in a slightly more

e¢ cient way (see Corollary 6.2), due to the following result.

Theorem 6.5 [25] Suppose A 2 Rn�n; �(A) > " and �(A�) = (gij) = (g1; :::; gn):
Then

� i 2 E(A) () gii = 0

� If i; j 2 E(A) then gi = �
 gj for some � 2 R if and only if i � j:

16



Corollary 6.2 Let A 2 Rn�n: If �(A) > ";� (A�) = (g1; :::; gn) and V +(A) 6= ;
then

V +(A) =

8<: X
j2E�(A)

�
�j 
 gj ;�j 2 R

9=; (18)

where E�(A) is any maximal set of non-equivalent critical nodes of A: The size
jE�(A)j is equal to the number of non-trivial strongly connected components of
the critical digraph C(A):

Remark 6.1 Note that in (18) in general, gj may or may not be in V +(A):
Therefore the subspace V +(A) may or may not be �nitely generated using vectors
from V +(A) and hence there is no guarantee that V +(A) has a basis.

Example 6.3 Consider the matrix

A =

0BB@
0 3
1 �1

2
0 1

1CCA
where the missing entries are ": Then �(A) = 2; E(A) = f1; 2; 3g ;dim (A) =
2: A �nite eigenvector exists since an eigennode is accessible from every node
(unlike in the slightly di¤erent Example 6.2). We can compute

�(A�) =

0BB@
0 1

�1 0
0

�2 �1

1CCA ;
hence a basis of the principal eigenspace is

n
(1; 0; "; ")

T
; ("; "; 0;�2)T

o
: All �-

nite eigenvectors are a max combination of the vectors in the basis provided that
both coe¢ cients are �nite. However, V +(A) has no basis.

The following classical complete solution of the eigenproblem for irreducible
matrices can now be deduced:

Theorem 6.6 (Cuninghame-Green [25]) Every irreducible matrix A 2 Rn�n (n > 1)
has a unique eigenvalue equal to �(A) and

V (A)� f"g = V +(A) =

8<: X
j2E�(A)

�
�j 
 gj ;�j 2 R

9=;
where �(A�) = (g1; :::; gn) and E�(A) is any maximal set of non-equivalent
critical nodes of A:

Remark 6.2 Note that the 1�1 matrix A = (") is irreducible and V (A)�f"g =
V +(A) = R:
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The fact that �(A) is the unique eigenvalue of an irreducible matrix A was
proved in [23] and then independently in [50] for �nite matrices. The description
of V +(A) for irreducible matrices as given in Corollary 6.1 was also proved in
[38].
Note that for an irreducible matrix A

V (A) = V +(A) [ f"g = f�(A�)
 z; z 2 R
n
; zj = " for all j =2 E(A)g:

Remark 6.3 Since �(A�) for an irreducible matrix A is �nite, the generators
of V +(A) are all �nite if A is irreducible. Hence V +(A) has a basis in this case,
which coincides with the basis of V (A):

Example 6.4 Consider the irreducible matrix

A =

0BB@
0 3 0
1 �1 0

0 2
0 1

1CCA
where the missing entries are ": Then �(A) = 2; E(A) = f1; 2; 3g ;dim (A) = 2:
We can compute

�(A�) =

0BB@
0 1 �4 �2

�1 0 �5 �3
�3 �2 0 �5
�5 �4 �2 �1

1CCA ;
hence a basis of the principal eigenspace is

n
(1; 0;�2;�4)T ; (�4;�5; 0;�2)T

o
:

6.3 Finding All Eigenvalues

First we introduce some notation that will be useful.
If

1 � i1 < i2 < ::: < ik � n;K = fi1; :::; ikg � N
then A[K] denotes the principal submatrix0@ ai1i1 ::: ai1ik

::: ::: :::
aiki1 ::: aikik

1A
of the matrix A = (aij) and x[K] denotes the subvector (xi1 ; :::; xik)

T of the
vector x = (x1; :::; xn)T 2 R

n
.

If D = (N;E) is a digraph and K � N then D[K] denotes the induced
subgraph of D; that is

D[K] = (K;E \ (K �K)):

Obviously, DA[K] = D[K].

18



The symbol A � B for matrices A and B means that A can be obtained
from B by a simultaneous permutation of rows and columns. Clearly, in that
case DA can be obtained from DB by a renumbering of the nodes. Hence if
A � B then A is irreducible if and only if B is irreducible.

Lemma 6.1 If A � B then �(A) = �(B) and there is a bijection between V (A)
and V (B).

The following lemma gives a clear signal that also in max-algebra the Frobe-
nius normal form will be useful for describing all eigenvalues.

Lemma 6.2 Let A = (aij) 2 R
n�n

; � 2 �(A) and x 2 V (A; �): If x =2 V +(A; �)
then n > 1;

A �
�
A(11) "
A(21) A(22)

�
;

� = �(A(22)) and hence A is reducible.

Proposition 6.1 Let A = (aij) 2 R
n�n

: Then V (A) = V +(A) if and only if A
is irreducible.

Every matrix A = (aij) 2 R
n�n

can be transformed in linear time by si-
multaneous permutations of the rows and columns to a Frobenius normal form
(FNF) [46] 0BB@

A11 " ::: "
A21 A22 ::: "
::: ::: ::: :::
Ar1 Ar2 ::: Arr

1CCA (19)

where A11; :::; Arr are irreducible square submatrices of A. If A is in an FNF
then the corresponding partition of the node set N of DA will be denoted as
N1; :::; Nr and these sets will be called classes (of A). It follows that each of the
induced subgraphs DA[Ni] (i = 1; :::; r) is strongly connected and an arc from
Ni to Nj in DA exists only if i � j: As a slight abuse of language we will also
say for simplicity that �(Ajj) is the eigenvalue of Nj :
If A is in an FNF, say (19), then the reduced digraph, notation CA; is the

digraph (fN1; :::; Nrg; f(Ni; Nj); (9k 2 Ni)(9` 2 Nj)ak` > "g):
The symbol Ni ! Nj means that there is a directed path from a node in

Ni to a node in Nj in DA (and therefore from each node in Ni to each node in
Nj). Equivalently, there is a directed path from Ni to Nj in CA.
If there are neither outgoing nor incoming arcs from or to an induced sub-

graph CA[fNi1 ; :::; Nisg] (1 � i1 < ::: < is � r) and no proper subdigraph has
this property then the submatrix0BB@

Ai1i1 " ::: "
Ai2i1 Ai2i2 ::: "
::: ::: ::: :::
Aisi1 Aisi2 ::: Aisis

1CCA
19



A44 A33

A11 A22

A66

A55

Figure 1: Condensation digraph for matrix (4)

is called an isolated superblock (or just superblock). The induced subdigraph
of CA corresponding to an isolated superblock is a directed tree (although the
underlying undirected graph is not necessarily acyclic). CA is the union of a
number of such directed trees. The nodes of CA with no incoming arcs are called
the initial classes, those with no outgoing arcs are called the �nal classes. Note
that the directed tree corresponding to an isolated superblock may have several
initial and �nal classes.
For instance the reduced digraph for the matrix0BBBBBB@

A11 " " " " "
� A22 " " " "
� � A33 " " "
� " " A44 " "
" " " " A55 "
" " " " � A66

1CCCCCCA (20)

can be seen in Figure 1 (note that here and elsewhere the symbols � indicate
submatrices di¤erent from "). It consists of two superblocks and six classes
including three initial and two �nal ones.

Lemma 6.3 If x 2 V (A); Ni ! Nj and x[Nj ] 6= " then x[Ni] is �nite. In
particular, x[Nj ] is �nite.

The following key result has appeared in the thesis [35] and [4]. The latter
work refers to the report [3] for a proof.

Theorem 6.7 (Spectral Theorem) Let (19) be an FNF of a matrix A = (aij) 2
Rn�n: Then

�(A) = f�(Ajj);�(Ajj) = max
Ni!Nj

�(Aii)g:

Note that signi�cant correlation exists between the max-algebraic spectral
theory and that for non-negative matrices in linear algebra [47], [6], see also [46].
For instance the Frobenius normal form and accessibility between classes are
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essentially the same. The maximum cycle mean corresponds to the Perron root
for irreducible (nonnegative) matrices and �nite eigenvectors in max-algebra
correspond to positive eigenvectors in the non-negative spectral theory. However
there are also di¤erences, see Remark 6.5 after Theorem 6.9 below.

Let A be in the FNF (19). If

�(Ajj) = max
Ni!Nj

�(Aii)

then Ajj (and also Nj or just j) will be called spectral. Thus �(Ajj) 2 �(A) if
j is spectral but not necessarily the other way round. The following corollaries
of the spectral theorem are readily proved.

Corollary 6.3 All initial classes of CA are spectral.

Corollary 6.4 1 � j�(A)j � n for every A 2 Rn�n.

Corollary 6.5 V (A) = V (A; �(A)) if and only if all initial classes have the
same eigenvalue �(A):

Figure 2 shows a reduced digraph with 14 classes including two initial classes
and four �nal ones. The numbers indicate the eigenvalues of the corresponding
classes. Six bold classes are spectral, the others are not.

6.4 Finding All Eigenvectors

Note that the unique eigenvalue of every class (that is of a diagonal block of an
FNF) can be found in O(n3) time by applying Karp�s algorithm (see Section
1) to each block. The condition for identifying all spectral submatrices in an
FNF provided in Theorem 6.7 enables us to �nd them in O(r2) � O(n2) time
by applying standard reachability algorithms to CA.
Let A 2 Rn�n be in the FNF (19), N1; :::; Nr be the classes of A and R =

f1; :::; rg: Suppose � 2 �(A); � > " and denote

I(�) = fi 2 R;�(Ni) = �;Ni spectralg:

Similarly as in Section 1 we denote �(��1 
A) = (gij) = (g1; :::; gn): Note that
�(��1 
A) may now include entries equal to +1: Let us denote

E(�) =
S

i2I(�)
E(Aii) = fj 2 N ; gjj = 0; j 2

S
i2I(�)

Nig:

Two nodes i and j in E(�) are called � - equivalent (notation i �� j) if i
and j belong to the same cycle of cycle mean �:

Theorem 6.8 Suppose A 2 Rn�n and � 2 �(A); � > ". Then gj 2 R
n
for all

j 2 E(�) and a basis of V (A; �) can be obtained by taking one gj for each ��
equivalence class.
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Figure 2: A condensation digraph with six spectral nodes
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Corollary 6.6 A basis of V (A; �) for � 2 �(A) can be found using O(n3)
operations and we have

V (A; �) = f�(��1 
A)
 z; z 2 Rn; zj = " for all j =2 E(�)g:

Theorem 6.9 V +(A) 6= ; if and only if �(A) is the eigenvalue of all �nal
classes.

Corollary 6.7 V +(A) = ; if and only if a �nal class has eigenvalue less than
�(A):

Remark 6.4 Note that a �nal class with eigenvalue less than �(A) may not be
spectral and so �(A) = f�(A)g is possible even if V +(A) = ;: For instance in
the case of

A =

0@ 1 " "
" 0 "
0 0 1

1A
we have �(A) = 1; but V +(A) = ;.

Remark 6.5 In the Perron-Frobenius theory of non-negative matrices, a class
of a non-negative matrix is called basic if its spectral radius coincides with the
spectral radius of the matrix. A classical result shows that a non-negative matrix
has a positive eigenvector if and only if its basic and �nal classes coincide. In
the max-algebraic setting we may de�ne a class to be basic when its eigenvalue
is �(A): Then, Theorem 6.9 shows that the existence of a �nite eigenvector only
requires all �nal classes to be basic; unlike in the Perron-Frobenius theory, there
may also be non-�nal basic classes. For instance the non-negative matrix

A =

�
1 0
1 1

�
has two basic classes f1g and f2g and only one �nal class, namely f1g, thus it
does not have a positive eigenvector. However, its max-algebraic counterpart

A =

�
0 �1
0 0

�
which satis�es the condition of Theorem 6.9 has a �nite eigenvector (for instance
(0; 0)

T ). This fundamental discrepancy is due to the idempotency of � in max-
algebra.

7 Some more max-algebra and open problems

7.1 Characteristic maxpolynomial

The max-algebraic permanent of A is de�ned as an analogue of the classical one:
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maper(A) =
M
�2Pn

O
i2N

ai;�(i)

where Pn stands for the set of all permutations of the set N: In the conventional
notation

maper(A) = max
�2Pn

X
i2N

ai;�(i)

which is the optimal value of the assignment problem for the matrix A. There
are a number of e¢ cient solution methods [10] for �nding maper(A); one of the
best known is the Hungarian method of computational complexity O(n3): The
set of all optimal permutations will be denoted by ap(A), that is,

ap(A) = f� 2 Pn;maper(A) =
X
i2N

ai;�(i)g:

The max-algebraic characteristic polynomial called characteristic maxpolyno-
mial of A 2 Rn�n is de�ned [25] by

�A(x) := maper(A� x
 I):

Hence
�A(x) = �0 � �1 
 x� � � � � �n�1 
 x(n�1) � x(n)

for some �0; :::; �n�1 2 R or, written using conventional notation

�A(x) = max (�0; �1 + x; � � � ; �n�1 + (n� 1)x; nx) :

Thus, viewed as a function of x; the characteristic maxpolynomial of a matrix A
is a piecewise linear convex function whose slopes are from the set f0; 1; :::; ng.
As a function, �A(x) can be found in O(n

4) steps [9] but no e¢ cient way seems
to be known for �nding all �0; �1; � � � ; �n�1:
Open Problem P1: Given A 2 Rn�n; is the problem of �nding all

�0; �1; � � � ; �n�1 polynomially solvable or NP -complete?
It is known [28] that every max-algebraic polynomial can be factorized to

linear factors in O(n log n) time. Thus the factors are of the form x�� where �
is a real constant. The constants � are called the corners of the max-polynomial.
The characteristic maxpolynomials have a remarkable property resembling the
conventional characteristic polynomials:

Theorem 7.1 [25] The greatest corner of �A(x) is �(A):

Open Problem P2: What is the meaning of the other corners?
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7.2 Alternative concepts of linear dependence/independence

A = (aij) = (A1; :::; An) 2 Rm�n is said to have

� independent columns if none of the columns is a max combination of the
remaining columns;

� Gondran-Minoux independent columns ifX
j2S

�
�j 
Aj =

X
j2T

�
�j 
Aj

does not holds for any real numbers �j and two non-empty, disjoint subsets
S and T of N ;

� strongly independent columns if A 
 x = b has a unique solution for at
least one b:

Open Problem P3: Find e¢ cient methods for checking Gondran-Minoux
independence and for checking strong independence.
A square matrix is called regular (Gondran-Minoux regular, strongly reg-

ular) if its columns are independent (Gondran-Minoux independent, strongly
independent).

Theorem 7.2 [39], [11] Let A be a square matrix.

(a) A is strongly regular if and only if ap(A) contains only one permutation.

(b) A is Gondran-Minoux regular if and only if all permutations in ap(A) have
the same parity.

Corollary 7.1 A regular =) A Gondran-Minoux regular =) A strongly regu-
lar.

Corollary 7.2 Given A; it is possible to check using O(n3) operations whether
A is regular, Gondran-Minoux regular or strongly regular.

7.3 Two-sided systems

Two-sided systems (TSS) of the form

A
 x� b = C 
 x� d

can be easily transformed to homogenous systems

A
 x = B 
 x

or to systems with separated variables

A
 x = B 
 y:

The latter can be solved using the pseudopolynomial alternating method [26].
The problem is known to be in NP \ co � NP and hence the existence of a
polynomial solution method is expected.
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Conjecture 7.3 Two-sided max-algebraic systems are solvable in polynomial
time.

The problem of �nding � and x satisfying the generalized eigenproblem

A
 x = �
B 
 x

can be considered as a generalization of both the eigenproblem and TSS. This
is one of the most challenging problems in max-algebra and no method seems
to be available in general. A number of special cases can be solved [29]. If A;B
are symmetric then there is at most one generalized eigenvalue [7].

7.4 Link to nonnegative matrices

Let A be an irreducible nonnegative matrix (in the ususual linear-algebraic
sense) and let

�
Ak
	1
k=1

be the sequence of Hadamard powers of A: Let �k be
the Perron root of Ak: It is known then that k

p
�k �! �(A) in the max-times

algebra [42]. Let xk be the Perron vector of Ak: Since A may have several
independent max-algebraic eigenvectors, it is not immediately clear to which
one does the sequence fxkg1k=1 converge.

Conjecture 7.4 fxkg1k=1 converges to the barycentre of the set of fundamental
(max-algebraic) eigenvectors.

7.5 Permutation problems

The following permutation problems in max-plus are NP -complete (when all
entries are integer) [15]:
(PEV) Given a square matrix A and a vector x; is it possible to permute the

components of x so that the arising vector is an eigenvector of A?
(PLS) Given a matrix A and a vector b; is it possible to permute the com-

ponents of b so that for the arising vector b0 the system A
 x = b0 is solvable?
We can of course formulate similar problems in conventional linear algebra

and both are NP -complete, too. However, PEV for positive matrices is easily
solvable since by Perron-Frobenius there is a unique positive eigenvector (up to
a multiple). This gives rise to the following open problems:
Open Problem P4: Is PEV for non-negative matrices polynomially solv-

able or NP -complete?
Open Problem P5: Is PLS for positive/non-negative matrices polynomi-

ally solvable or NP -complete?
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